WALLOW.

WHOLISTIC AND INTEGRATED DIGITAL TOOLS FOR EXTENDED LIFETIME AND PROFITABILITY OF OFFSHORE WIND FARMS

10 September 2024

Funded by the European Union

PROJECT DATA

- Call: HORIZON-CL5-2022-D3-03 (Sustainable, secure and competitive energy supply)
- Topic: HORIZON-CL5-2022-D3-03-04
- Type of Action: HORIZON-RIA
- Topic budget: ~18 M€
- Acronym: WILLOW
- Project Title: Wholistic and Integrated digitaL tools for extended Lifetime and profitability of Offshore Wind farms
- EU Grant: ~5.8 M€ (100% funding ratio)
- Project start: 2023-10-01
- Project End: 2026-09-30

CONSORTIUM

Research and Technology Organisations

Ceit (Spain) - **Coordinator** Flanders Make (Belgium) Sintef Energy Research (Norway) Sirris (Belgium)

University

VUB (Belgium)

Offshore Operator

Norther (Belgium)

SMEs

Alerion (Spain) C-Cube (The Netherlands) TSI (Spain) 24SEA (Belgium) Wölfel (Germany)

Cluster

Basque Energy Cluster (Spain)

INDEX

WTLLOW

01 03 02 Objectives Work Packages Context & Challenges & Activities 04 05 06 Advisory Expected Outcomes Board Impacts

CONTEXT

Current scheme

- Operation of offshore wind farms not ideal:
 - Fluctuating conditions of wind availability and power grids demand plus harsh environmental condition affect negatively the structure health of wind turbines (useful lifetime).
 - Excessive downregulation and frequent start-stop events affect fatigue life (turbines operate in off-design conditions).

How is it done <u>today</u>?

- Stopping a few turbines and letting the others produce maximum power.
- Downregulating each turbine by the same amount.
 - \longrightarrow Negative effects in fatigue life

Wholistic and integrated digital tools for extended lifetime and profitability of offstore win

CHALLENGES

Current problematic

Lack of success in implementing new decision-making schemes.

Why?

- Component degradation and grid integration particularly complex.
- Offshore additional degradation rates:
 - Corrosion due to moisture and salinity.
 - Additional loads (waves, tides and currents).

WILLOW approach: <u>Open-source</u>, <u>data-driven smart curtailment solution</u> considering the degradation of WF structures (trade-off power production and lifetime consumption).

Wholistic and integrated digital tools for extended lifetime and profitability of offshore wind farms

OBJECTIVES

Global **Structural Health Monitoring** (SHM) based on loads, accelerations, images, thickness losses considering fatigue, pitting corrosion and coating degradation by using physical and virtual sensors combined with Machine Learning (ML) techniques.

Prognosis tools by combining SCADA and SHM data, using physical models and ML methods.

→ To predict the consumed lifetime and the remaining useful life.

Decision-making support tool for smart power dispatch in curtailed conditions and O&M scheduling.

NORK PACKA

Wholistic and integrated digital tools for extended lifetime and profitability of offshore wind farms

ACTIVITIES → USE CASE

NORTHER OFFSHORE WIND FARM

- 44 wind turbines (WT).
- Max. capacity **370 MW**.
- Belgian **North Sea**, 23 km from Belgian port of Zeebruges.
- <u>Use case</u>: when WTs are being curtailed, that is when they are forced below the expected power output at the occurring environmental conditions.

ACTIVITIES → OFFSHORE TEST BENCHES

BLUE ACCELERATOR

- Maritime innovation and development platform and test site for research, new coatings and monitoring solutions.
- Located at 500 m off the port of Ostend in Belgium.
- It consists of a monopile with a powerhouse on top, and a surrounding seabed test area of 220 m around the platform.

HARSHLAB

- Largest floating test laboratory for offshore industry.
- It is moored in Biscay Marine Energy Platform (BIMEP), situated in the Gulf of Biscay, **3 km in front of the village Armintza** (Biscay), north of Spain.
- Equipment, new materials and coating can be evaluated in a wide variety of conditions ranging from atmospheric to seabed.

ADVISORY BOARD

OUTCOMES

Open-source data-driven tools to:

- 1. Decrease energy costs on operation
- 2. Increase total wind farm output
- 3. Parallel evaluation of operational risks

2

4

Digital and physical tools, as well as interoperable frameworks and controls for enhanced **data collection**, **analysis**, **and operation**.

3

Better informed decisions by operators on:

- 1. Farm-wide system optimisation
- 2. Lifetime extension
- 3. Decommissioning

LCOE reduction in line with the SET Plan targets, through increased in Remaining Useful Lifetime of substructures.

EXPECTED IMPACTS

Wholistic and integrated digital tools for extended lifetime and profitability of offshore wind farms

THANK YOU!

- Ainhoa Cortés
 - +34 943 212 800
- acortes@ceit.es
- willow-project.eu

