

TWAIN (Towards) Integrated, Value-based, Multi-objective Wind Farm Control powered by AI

Tuhfe Göcmen

DTU Wind & Energy Systems

Funded by the European Union

Consortium

NIAWT

TWAIN Narrative

Turbines interact with each other & their environment

- Communication through turbine controllers

 ² Greedy
- Aerodynamic interaction within the wind farm & interface with the environmental surroundings
 Cmast & Awase

NAIN

- 🛙 Smart & Aware
- Digitalisation of the processes & value
- Operation management
- Decision making
- Integration at the design phase

Social Aspects

- Emitted, Propagated and perceived noise
- How can we mitigate for higher acceptability & affordability of green electricity?

Wildlife

- Birds & bats around the turbines
 - Curtailed or interrupted operation
- How does it affect the revenue stream and optimum operation?

Precipitation & Rain

- Drivers of leading-edge erosion
 - (un)scheduled repairs 🛛 higher O&M costs
 - Mitigated through torque control
- How can we include that in the controller hierarchy & value chain?

TWAIN Methodology

decision support environment for wind power asset management

TWAIN

To support WF owners/operators to make better decisions for system-wide optimised performance, TWAIN's concept pivots on a full-integration of WFC at five different levels:

1) Integration of multi-source and multi-format data of varied nature from WFs in different life stages

2) AI-enabled Integration of multi-disciplinary processes and phenomena affecting the WF operation

3) Integration of multi-objective prospects of WFC to assess the *true* added value of a certain operation mode

4) Integration of multi-level controllers and scenario analyses in decision support provision for harmonious co-existence of WPPs with their

environment and society via optimised operation and design

5) Integration of wider audience to TWAIN outcomes

TWAIN Outcome & Interactions among toolboxes 🔁 TWAIN

TWAIN Case Studies

TWAIN Campaigns: Risø Field Tests

- DTU, supported by CENER and EDF, will perform the field test at Risø WF to **validate the expected gains** for
 - power maximisation under structural load constraints via wake control, and
 - income maximisation
 with variable market
 scenario under load
 constraints
 - 2 x Vestas V27 turbines

TWAIN Data Environment Overview

Objective:

- Design a framework to integrate different data sources while meeting business and technical requirements
- Ensure data integrity, standardization, and compliance with regulations

Framework Features:

- Open-source: Encourages collaboration and transparency
- Interoperable: Seamlessly integrates with various data sources
- Secure: Implements multiple layers of security to protect data

Development Phases:

- Design Phase: Architecture vision development and framework assessment
- Implementation Phase: Technological setup and deployment of data environment components

TWAIN Data Env.: Key Components & Processes 🛛 TWAIN

Public

Postgre SQL

Kubernetes Cluster

Architecture Vision:

- Developed with input from data owners through workshops
- Includes security layers and constraints

Framework Features:

- Quality attributes workshops and use case validations
- Partner questionnaires and meetings to validate drafts

Implementation Highlights:

- End-to-end architecture components implemented
- Deployment to local Kubernetes clusters and DTU infrastructure
- Demonstrations for the consortium

δ.

cloak_user

KEYCLOAK

😪 elasticsearch

External Identity Provid (e.g. DTU Keycloak)

EYCLOAN

00

Superset

Integrated WFC – Synergies Workshop 10/09/2024

10

Next Steps

Conduct user testing with PUBLIC ACCESS and release MVP v.0

Data Management:

Security Measures:

• Three levels of security:

and authorized users

- Data acquisition, storage, and processing
- Data standardization methodology with ontology integration rules
- Automated environment with security constraints for data access

TWAIN Data Env.: Security & Data Management

Thank you

Funded by the European Union