

TWAIN (Towards) Integrated, Value-based, Multi-objective Wind Farm Control powered by AI

Tuhfe Göcmen

DTU Wind & Energy Systems

Consortium

Technische Universität München

VATTENFALL

TWAIN Narrative

Turbines interact with each other & their environment

- Communication through turbine controllers
 Greedy
- Aerodynamic interaction within the wind farm & interface with the environmental surroundings
 - 2 Smart & Aware
 - Digitalisation of the processes & value
 - Operation management
 - Decision making
 - Integration at the design phase

Social Aspects

- Emitted, Propagated and perceived noise
- How can we mitigate for higher acceptability & affordability of green electricity?

Wildlife

- Birds & bats around the turbines
 - Curtailed or interrupted operation
- How does it affect the revenue stream and optimum operation?

Precipitation & Rain

- Drivers of leading-edge erosion
 - (un)scheduled repairs 🛽 higher O&M costs
 - Mitigated through torque control
- How can we include that in the controller hierarchy & value chain?

TWAIN Methodology

decision support environment for wind power asset management

To support WF owners/operators to make better decisions for system-wide optimised performance, TWAIN's concept pivots on a full-integration of WFC at five different levels:

- 1) Integration of multi-source and multi-format data of varied nature from WFs in different life stages
- 2) Al-enabled Integration of multi-disciplinary processes and phenomena affecting the WF operation
- 3) Integration of multi-objective prospects of WFC to assess the true added value of a certain operation mode
- 4) Integration of multi-level controllers and scenario analyses in decision support provision for harmonious co-existence of WPPs with their environment and society via optimised operation and design
 - **5)** Integration of wider audience to TWAIN outcomes

TWAIN Outcome & Interactions among toolboxes TWAIN

TWAIN Case Studies

Objectives

Economic

- · \ LCOE
- 1 revenue

Societal & Environmental

↓ carbon footprint

Risk & uncertainties

- † security, stability and reliability of electricity supply
- ↓ integrated risk

Constraints

Societal & Environmental

- Environmenta • Noise
- constraints
- Wildlife constraints (FR)

Risk & uncertainties

- ↑ resilience
- Application to ENGIE WF in France

Objectives

Economic

- \$ LCOE
- ↑ revenue

Societal & Environmental

• ↓ carbon footprint

Risk & uncertainties

- ↑ security, stability and reliability of electricity supply
- ↓ integrated risk

Constraints

Risk & uncertainties

- ↑ resilience, adaptability and generalisability of AI for large offshore WFs
- Application to Vattenfall WF, Lillgrund in the Baltic Sea

Objectives

Economic

- ↓ LCOE
- ↑ revenue

Societal & Environmental

↓ carbon footprint

Risk & uncertainties

- ↑ security, stability and reliability of electricity supply
- ↓ integrated risk with 20+MW WTs

Constraints

Societal & Environmental

• ↓ use of land via closer spacing

Risk & uncertainties

• ↑ resilience under climate change and renewablesdriven energy system & markets

Towards the end of life: Extension or Repowering?

Objectives

Economic

- · \ LCOE
- ↑ revenue

Societal & Environmental

• ↓ carbon footprint

Risk & uncertainties

- † security, stability and reliability of electricity supply
- ↓ integrated risk

Constraints

Societal & Environmental

- ↓ use of land via closer spacing
- ↓ visual impact via repowering

Risk & uncertainties

- ↑ resilience
- Application to
 15+ years old
 ENGIE WF in
 Germany

TWAIN Campaigns: Risø Field Tests

- DTU, supported by CENER and EDF, will perform the field test at Risø WF to validate the expected gains for
 - power maximisation under structural load constraints via wake control, and
 - income maximisation with variable market scenario under load constraints
 - 2 x Vestas V27 turbines

TWAIN Data Environment Overview

Objective:

- Design a framework to integrate different data sources while meeting business and technical requirements
- Ensure data integrity, standardization, and compliance with regulations

Framework Features:

- Open-source: Encourages collaboration and transparency
- Interoperable: Seamlessly integrates with various data sources
- Secure: Implements multiple layers of security to protect data

Development Phases:

- Design Phase: Architecture vision development and framework assessment
- Implementation Phase: Technological setup and deployment of data environment components

TWAIN Data Env.: Key Components & Processes TWAIN

Architecture Vision:

- Developed with input from data owners through workshops
- Includes security layers and constraints

Framework Features:

- Quality attributes workshops and use case validations
- Partner questionnaires and meetings to validate drafts

Implementation Highlights:

- End-to-end architecture components implemented
- Deployment to local Kubernetes clusters and DTU infrastructure
- Demonstrations for the consortium

TWAIN Data Env.: Security & Data Management

Security Measures:

- Three levels of security: infrastructure, data, and solution
- Access control for authenticated and authorized users

Data Management:

- Data acquisition, storage, and processing
- Data standardization methodology with ontology integration rules
- Automated environment with security constraints for data access

Next Steps

Conduct user testing with PUBLIC ACCESS and release MVP v.0

