

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the granting authority. Neither the European Union nor the granting authority can be held responsible for them

Innovation project supported by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

Smart, Aware, Integrated Wind Farm Control Interacting with Digital Twins (ICONIC)

Professor Xiaowei Zhao Intelligent Control and Smart Energy Research Group University of Warwick Xiaowei.zhao@warwick.ac.uk 10 September 2024

ICONIC Project partners

Key Ambition of ICONIC

Main Objectives of ICONIC

• O1: Develop new wind farm control tools to improve wind farm operations leveraging Al innovations.

• O2: Investigate turbine control solutions with load-reduction abilities to deliver farm-wide objectives.

• O3: Develop digital twins and physical tools for awareness and control enhancement considering RUL assessment of wind turbine key components.

• O4: Validate and exploit the integrated control system and DTs via wind tunnel tests, historical operational data, dedicated test rigs, and field tests, and bring ICONIC's key innovations to TRL5

Control-Oriented Wind Farm Modelling via CFD and Machine learning

- CFD models accurate but slow
- Analytical wake models fast but inaccurate

Low fidelity model FLORIS

High fidelity LES by SOWFA

Al-Based Farm-Level Control and Decision-Making to Improve Operating Efficiency of Wind Farms

Offline RL-based wind farm control

Y. Huang and X. Zhao, Wind Farm Control via Offline Reinforcement Learning with Adversarial Training, IEEE Transactions on Automation Science and Engineering, under revision, 2024.

0

Grid

Random

Wind farm layouts

C-Power

2

4

6

8

Offline RL-based wind farm control

2

4

6

8

Advanced Turbine-Level Control with Load-Reduction Abilities

- A novel stochastic MPC for pitch and torque control to reduce conservativeness and enhance performance.
- A novel tube MPC method for yaw control to ensure strict safety requirements
- Time-critical justification for MPC methods to achieve complexity reduction and computational time boundedness
- Control performance enhancement with LIDAR measurements

Wind Farm Digital Twin via Physics-Informed Deep Learning

Data (Lidar) + Physics (NS equations) + ML

Digital Twins and Lifetime/RUL Estimations of Critical Components

Historical data

Multi-physical wind turbine drivetrain **Digital Twins** (coupled via signal processing & state/input observers)

Current Status, Outlook, Impact & Ways for future 20MW Wind Turbines

	OFFSHORE WIND TURBINES						
		2020 - BAU		2030		2050	
	Unit	Avg*	Max**	Avg*	Max**	Avg *	Max**
Worldwide: installed capacity	GW	29	.1 ^(a)	22 175	28 ^(b) -210 ^(e)	1000 ^(b)	
Europe: Installed capacity	GW	22 ^(c)		78 ^(b) 77-127 ^(d)		215 ^(b)	
Wind turbine unitary nominal power	MW	7,2 ^(k)	12 (7)	10-12	15-20 ⁽ⁿ⁾	20(0)	>20
Capacity factor Wind farm size	% GW	38 ^(k)	63(1)	36-58 ^(b)		43-60 ^(b)	
		621 ^(e)	1,210	1-1.5	3		
Number of turbines per wind farm	0	87 ^(e)	1740	83-125	125	****	
Hub height	m	100	150(1)	-	160.2 ^(g) 276 ^(g) 135 ^(g)	mized values respect the 20 MW in 2020	***
Rotor diameter	m	154	220(1)	Spe			
Blade length	m	75	107(1)	202			***
Blade weight	Tn	***	***	mised values the 12 MW in	259(9)		
Blade root diameter	m	4 ^(s)	6 ^(s)		5.5-7(9)		8-10 ^(q)
Power train nominal torque (LSS)	kNm				26.711 ^(g)		
Power train nominal speed	rpm		****	Option	7.15 ^(g)	Option	Gr-

Wind turbine size forecast (inc. 20MW) from Innteresting.

Layout and virtual location of CS3 wind farm.

Comprehensive Validations of Controls and Digital Twins

- Wind tunnel tests
- Numerical Simulations various fidelities
- Field tests

- Case study #1: C-power (offshore)
- Case study #2: BP (onshore)
- Case study #3: Virtual farm design (20MW)

Thanks for your attention

Professor Xiaowei Zhao Intelligent Control and Smart Energy Research Group University of Warwick Xiaowei.zhao@warwick.ac.uk 10 September 2024

