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Abstract. An energy management system (EMS) is formulated for a hybrid power plant
(HPP), consisting of a wind power plant and battery storage plant, participating in bidding
stages in the German energy market. The EMS utilizes supervisory control and data acquisition
(SCADA) measurements from the site to improve power forecast from the wind power plant.
First, the measurement data is used together with numerical weather prediction data to
accurately forecast local wind conditions. Second, the measurement data is used to adapt a
baseline engineering wake model that gives the total wind power generation for a given input
wind condition. The EMS also uses an online cyclic damage minimization approach to accurately
balance the battery damage cost against the revenue obtained by market bidding. An HPP
controller is formulated to ensure proper tracking of optimal set-points. When compared with
the industry standard, the proposed formulation shows an accurate estimation and balancing
of revenue and costs and a significant reduction in the power deviation penalty, which leads to
significantly higher overall profit.

1. Introduction

The variability of wind power creates fluctuations in the electricity market prices. As a
consequence, the electricity price is typically negatively correlated with wind speed [1]. Wind
farm owners — as price-takers in the electricity market — suffer from these fluctuations, which
tend to reduce revenue. To tackle these challenges, one emerging approach involves hybridizing
the wind power plant (WPP) with other systems such as batteries [2, 3]. Operating such a hybrid
power plant (HPP) in an optimal manner within the electricity market can help maximize profit
while improving system reliability and stability.

An energy management system (EMS) facilitates the participation of HPPs in energy markets.
State-of-the-art HPP-EMSs aim to maximize the overall revenue while utilizing battery energy
storage (BES) to compensate for deviations from the optimal power reference, due to forecast
errors and wind power variability [4, 5]. Such approaches fail to consider the cost of battery
degradation, which may have a significant impact on the overall profit. Furthermore, some
formulations use a simplified WPP model and BES degradation model [6, 7]. More recent
and advanced HPP-EMS approaches do estimate battery damage more accurately, however,
only an indirect damage minimization is typically considered and the cost of cyclic damage is
approximated within the optimization [8].



The objective of this work is to develop a profit-optimizing EMS that 1) is based upon a data-
driven generation and electricity price forecast model, and 2) considers directly and explicitly
the cost of battery cyclic damage. An HPP controller (HPP-C) is formulated to ensure the
fulfillment of the EMS optimal power reference. The HPP profit is quantified and the benefits
due to the integration of measurement data and an improved optimization formulation are
assessed and compared to state-of-the-art formulations. The deviation between HPP reference
and generation is particularly crucial as it necessitates the deployment of grid ancillary services
by the system operator, for which the HPP owner can be heavily penalized. In this context,
another objective of this work is to assess the HPP tracking performances for different EMS
optimization cases.

The remainder of the paper is organized as follows. Section 2 presents the underlying
methodology developed in this work, explaining the HPP models in Sect. 2.1, the proposed
data-driven forecasters for wind power and electricity market price in Sect. 2.2, mathematical
formulation of profit-optimal EMS in Sect. 2.3, and the HPP controller in Sect. 2.4. The
performance of the proposed EMS formulation is assessed through a simulation case study
described in Sect. 3, followed by conclusions and outlook in Sect. 4.

2. Methodology
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Figure 1: Energy market timeline for Germany.

A schematic representation of the energy market phases is shown in Fig. 1. The first bid
opportunity, called ‘day-ahead’ (DA), takes place on the day before delivery, in hourly resolution.
As the WPP generation forecast still has a high degree of uncertainty, the resulting deviations
can later be corrected on the intra-day (ID) market, where market bidding takes place in a
quarter-hourly resolution. It should be noted that the last opportunity for bid revision on the
market occurs one hour ahead (HA) of the delivery time.

Figure 2 shows the considered setup in detail, where an HPP consisting of a WPP and a
BES plant is connected to the electricity grid through a single point of interconnection. The
HPP-EMS receives continuous updates on the market price, and the wind power forecasts, and
calculates optimal power bids for the energy markets using HPP plant measurements. The
HPP-C receives optimal power set-points from the HPP-EMS and ensures proper tracking.

2.1. Hybrid power plant
This section presents the characteristics of the wind power and battery plants that constitute
the hybrid power plant considered in this work.

2.1.1. Wind power plant. The investigated wind farm consists of twelve 2 MW wind turbines
in an irregular layout. All turbines have a rotor diameter of 82 m and a hub height of 80 m. The
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Figure 2: Schematic representation of participation of an HPP in an energy market.

site is characterized by gently rolling hills and can be characterized as semi-complex. The farm
is located on a sloping terrain that slightly raises in elevation towards the southwest direction.

An engineering model is used to represent the effects of the flow within the wind plant [9].
The parameters of the farm flow model are tuned offline using site-specific measurement data, to
better capture the wake interactions and accurately predict the power generation from individual
turbines [10]. Two years of high-frequency on-site SCADA measurements, from 2019 to 2021,
were utilized for the calibration process (see Sect. 2.2.2 for details).

2.1.2. Battery energy storage. An electrical equivalent circuit model of a 6 MW /6 MWh Li-
ion battery has been considered in this work. The battery model consists of three sub-models:
electrical, thermal, and degradation. For a given battery power Pp (positive for the discharging
case and negative for charging one), the electrical sub-model captures the dynamics of the
battery current I and the state of charge (SOC) as

. I
SOC = ——. (1)

Q
Here, Q represents the maximum charge capacity of the battery at a given time and () indicates
a derivative with respect to time. () always decreases over time and usage because of the
permanent loss in the capacity of the battery due to the accumulated cyclic damage Q)cy.. For



a given set of SOC samples, ¢y is calculated with a novel Rainflow cycle-counting algorithm
(refer to [11] for details), which explicitly considers the impact of SOC residue samples. The
battery thermal model captures the dynamics of battery temperature T; as

1

Tb = Ci(IQRznt - CR(Tb - Tambient))> (2)
H

based on a lumped heat capacitance model [12], where Cr, Cp, and Tympient denote cooling

rate, heat capacity, and ambient temperature, respectively. For the sake of simplicity, T, mpient

is assumed to be constant at 298.15K. The modeling approach of the BES has been discussed

in detail in [13].

2.2. Forecasting

2.2.1. Wind condition forecast. 'The wind conditions are predicted using Deep Neural Networks
(DNNs). The training targets are the north-aligned component u and the east-aligned
component v of the wind measurements at the site for the next 36 hours. The choice of the
forecast horizon of 36 hours is dictated by the application in the DA market, where the bidding
stage for the DA stage (24-hour duration) closes 12 hours before the start of delivery. As
input data, features from the two numerical weather prediction (NWP) models ICON-EU and
ARPEGE are used [14, 15]. Additionally, lag features, i.e. the u and v component targets from
previous timestamps were used for the input data. Instead of predicting the entire forecast
horizon with a single DNN, an ensemble method consisting of multiple different DNNs is used.
This is done by dividing the forecast horizon into 12 overlapping segments. For example, one
segment covers hours 2 to 12, the next segment covers hours 4 to 16, and so on. The overlap
is constructed so that each hour is covered by an ensemble of four DNNs. This approach was
chosen because it leads to higher forecast accuracy in each segment, compared to the use of
networks charged with forecasting over the entire horizon. For each step within the segments,
the outputs of the four ensemble networks are averaged to produce the local forecast.

To reduce the number of input parameters of DNNs, a feature-selection algorithm is applied
to each of the 12 DNNs, followed by a hyper-parameter optimization of the DNN architecture
and the training optimizer. This automated hyper-parameter optimization step is based on
parameter-exploring policy gradients (PGPE) [16]. The training was based on the Adam
optimizer based on a mean squared error loss function [17]. The data was split into training
(88%) and validation (12%) sets, avoiding correlations between the two.

2.2.2. Power generation forecast. The engineering flow model FLORIS uses the wind condition
forecast to predict the inflow at each turbine as well as their individual power production [9].
As the baseline model does not capture all of the flow effects, a data-driven adaptation is used
to reduce error and uncertainty in the power predictions. The adaptation is performed using
historical measurement data, following the ‘wind farm as a sensor’ approach described in detail
in [10].

Firstly, the methodology includes a re-calibration of the wake and turbulence model. The
standard parameters of the Gaussian wake model and the Crespo-Hernandez wake-added
turbulence model, were subject to retuning [18, 19]. The second correction is aimed at capturing
terrain effects, which cause a heterogeneous background flow across the site. At present, the
FLORIS version does not contain a terrain flow solver, and the site is assumed to be flat
with homogeneous ambient flow. To correct for this, a heterogeneous field is modeled by
means of a grid of flow speed-up nodes, whose parameter values are dependent on position
and environmental conditions.

Historical measurement data is used to simultaneously learn the speed-up correction factors
and to tune the wake model parameters. A maximum likelihood estimation finds the set of



parameters that best describes the observed power output of the individual turbines. The wake
model parameter-tuning resulted in a slightly slower wake decay, causing higher wake loss. The
identified background wind speed field agreed with the terrain contour, with higher speed-ups
towards the hill crest. The r.m.s.-error of turbine power prediction, normalized by rated power,
is reduced from ér ;ms = 0.084 to 0.065, which corresponds to a 23% reduction for the validation
data set.

2.2.8. Market price forecast The price forecasts for the energy market are based on DNNs. For
both DA and ID price forecasts, historic data on Germany-wide renewable and non-renewable
energy generation, total load, and import/export are used as input data for the DNN. During
the training process, historic hourly DA auction prices are used as targets for the DA price
forecast, while they also serve as additional input for the ID price forecaster. The ID forecaster
alms to predict the quarter-hourly weighted average price of the preceding three hours before
delivery (ID3). The normalized root mean square error (nRMSE) is used as a metric to evaluate
the model accuracy during training for both price forecasters. Furthermore, a hyper-parameter
optimization was also used (see Sect. 2.2.1).

2.3. Hybrid power plant: energy management system

The EMS receives continuous updates on the WPP generation forecast, market price forecast,
as well as HPP system states, and participates in bidding stages of DA and ID markets. The
EMS optimization problem aims to maximize the economic profit by balancing revenue accrued
from selling electricity on the market and the cost of cyclic damage. The objective function can
be mathematically written as

T
max Y AJ"- b — OV — wPr. | 5, | (3)
t

The revenue on the current step m results from the market price forecast A\;* and the market
bid b,,, for each time interval ¢ of the forecast horizon T

The battery cyclic damage costs C;Y are formulated using the Parameteric Online Rainflow
Counting (PORFC) approach, which allows direct consideration and minimization of cyclic
damage [11]. The PORFC algorithm uses a pre-processing step to identify fatigue cycles
for a given set of SOC' samples, and splits the respective damages over the contributing

samples. The output of the pre-processing step is the PORFC mean parameters S OC,};(,)CRFC and

PORFC weight parameters SOCE%RFC [13]. These parameters are used to obtain a continuous
formulation of cyclic damage cost that can be written as

Ci¥ = wp Z Quyenisoc (S0C, SOCLORTC SOC, Q'Y (4)

where the weight factor wp represents the unit replacement cost of the battery [13].
The deviations between market biddings and HPP power generation §; are minimized through
the penalty weight wP"*% > ( and the soft-constraint

Z BIY 4 byt — plPP _ pessres gy e (5)

The power generation of the HPP is determined by the combination of wind plant power p;**

bess,res

and the power from the battery storage p, , where the bids BZ”/ on previous and already



completed steps m’ during ID stages are considered. While in the DA stage bids can be placed
at any interval ¢, in the ID stage they are restricted to time intervals after the gate closure time
t9¢, i.e.

P=0 VteT ={t|teT nt<t9. (6)

Battery storage within the EMS is modeled via the energy throughput approach,

SOCy41 — SOC; = —plessres.. VteT, (7a)

(Cbatt
1 .
p?ess,res = ngh o nzn . pfh VieT, (7b)

where SOC; and C®** represent state-of-charge and nominal capacity of the battery storage,
7™ and n°“* the charging and discharging efficiencies, p{*" and p§" the charging and discharging
power, and At the time difference between ¢ and ¢ + 1.

Furthermore, the operation of the battery storage is restricted by the capacity limits for SOC
and charging power,

0<S0C, <1 VteT, (8a)
ngh < pdch,maac’ p;:h < pch,maac ViteT. (Sb)

The SOC is restricted to 50% for the initial and final state of the forecast horizon. Otherwise,
during the intra-day market stage, the feedback of the electrical battery model (Sect. 2.1.2) is
used to estimate the initial state SOCy . at the beginning of the remaining dispatch horizon,
i.e.

0.5 if tg = tips
SOC,, = U0 Bt (9a)
SOCy,est. otherwise
SOC,, ., = 0.5, (9b)
The operation of the WPP is bounded by the forecasted power p;""""** i.e.
0 < pPP < p/PPmt Yt eT. (10)

2.4. Hybrid power plant: controller

The inevitable short-term forecast errors are compensated, post-market-closure, using wind farm
curtailment and/or battery reserves. As a consequence, HPP-C is formulated as a rule-based
controller that, depending on wind farm availability, decides to either curtail the wind farm or
generate the available power. The remaining power goes as a reference to the battery, depending
on the battery current SOC, to ensure fulfillment of the HPP reference.

As HPP power tracking is of key importance to maximize performance, the implementation
of WPP power tracking is based here on a margin-boosting wind farm active power controller
(APC), which reduces the occurrence of saturation events of individual turbines [20]. The
method combines wake control with induction control, where improved tracking performance
is achieved by explicitly maximizing the power margin to hedge against wind lulls. The core
of control architecture is a model-based optimal planner for the open-loop set-point of the
individual turbines. This is combined with a closed-loop corrector to ensure optimal tracking.

The battery controller is formulated as a rule-based controller that checks if the desired power
can be provided by the BES, depending on the current SOC. If the available power is greater
than the desired power, the battery fulfills the set-point. Otherwise, the battery provides the
set-point power only until it reaches the prescribed SOC limit.



3. Case study

To evaluate the proposed HPP-EMS, a simulation case study has been performed, where the
considered HPP (refer to Sect. 2.1 for details) is participating in the German energy market for
72 hours in March 2019. The optimal HPP power reference and corresponding share of WPP
that optimizes the EMS objective are dispatched to the HPP-C every 15 minutes. The HPP-C
is executed every minute and the battery SOC update is sent back to the EMS. The case study,
including the communication between individual blocks, is implemented using the digital twin
framework MesH-REcon, which is presented in detail in [21].

Three HPP-EMS formulations have been compared. The first is built upon the current
industry standards (henceforth referred to as standard), where the EMS utilizes wind power
predictions based on the NWP models and aims to maximize HPP revenue. The second case
(henceforth referred to as standard+data) has an improved power forecasting ability due to the
integration of site-specific measurements, but still aims to maximize only revenue. These two
cases are compared with the proposed formulation (henceforth referred to as proposed), where
EMS uses data-driven wind condition forecasting combined with a tuned wind farm model to
obtain wind power predictions, and maximizes HPP profit by balancing the revenue accrued from
the market and the cost of battery cyclic damage. All three cases use BES to compensate for
short-term deviations. Tab.1 summarizes the characteristics of different HPP-EMS formulations
assessed in this section.

Table 1: Characteristics of assessed HPP-EMS formulations

Case Wind condition forecast Power generation forecast HPP-EMS objective
standard Numerical weather prediction standard wake model Maximize revenue
standard+data Deep neural networks tuned wake model Maximize revenue
proposed Deep neural networks tuned wake model Maximize profit
standard case standard+data case proposed case
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Figure 3: Economic performance of the HPP participation in the German energy market.

Figure 3 shows the economic performance of the HPP for the three EMS formulations. The
net economic profit (shown in green) is calculated as the difference between revenue, cost, and
penalty. Revenue (shown in dark blue) is calculated as the product of power bids and respective
actual prices for both the DA and ID markets. Cost (shown in red) is calculated as the fraction of
the replacement cost of the battery due to the accumulated cyclic degradation. Penalty (shown in



black) is calculated as the product of HPP generation error and balancing energy (reBAP) price.
The proposed formulation results in a 35.5% higher net profit than the standard formulation.
The results for standard+data formulation show that just the effective integration of site-specific
measurements results in a 30.1% higher profit. Thus, an additional 5.4% improvement is due to
a direct and accurate consideration of the cost of battery damage within the EMS optimization.
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Figure 4: Dynamic performance of the HPP participating in the energy market.

Figure 4 shows the bid (in dashed line), set-point (in dotted line), and the actual generation
(in solid line) of the HPP for the three EMS formulations as three subplots. The bid curve
represents the bid cleared by the market. Post-market closure and before the time of power
delivery, the EMS still modifies the HPP set-point based on the most recent update of the wind
power forecast and the battery SOC. Figure 4 shows that, for the standard formulation, the
EMS foresees a significantly higher generation capacity compared to the other two cases and
hence bids more in the market. However, the generation error is also significantly higher, owing
to the inferior forecasting accuracy of the NWP models that do not capture site-specific weather
phenomena as well as local terrain effects. For the standard+data and proposed formulations,
a more accurate forecast of wind power production results in a more precise power bid and
considerably reduced errors between set-point and actual generation. As a consequence, both
the revenue and penalty are significantly smaller, resulting in a higher overall profit than the
standard formulation, as seen in Fig. 3.

As mentioned previously, once the set-point is sent to the HPP-C, the energy stored in
BES is used to compensate for short-term deviations. Since in the proposed formulation, the
EMS explicitly considers the damage due to SOC cycles and balances it against the market
revenue, the EMS bids slightly less power in the market, leading to smaller revenues. Figure
5 shows the resulting SOC profile for the three formulations. Results indicate that both the
proposed and the standard+data formulations are characterized by fewer cycles of smaller cycle
depth, whereas the standard formulation is characterized by multiple cycles of larger depth.
This is because of the increased short-term compensation that is required in this case by using
battery reserves. Moreover, the cycle depth of the proposed formulation is smaller than the
one of the standard+data formulation. This is because of the explicit minimization of cyclic
damage within the EMS optimization, which results in the lowest cost of cyclic damage for the
proposed formulation. Furthermore, the reduction in the cost of BES damage is achieved at a
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Figure 5: State of charge profile showing the utilization of BES for the three EMS formulations.

similar penalty as in the standard+data case, leading to the highest net profit for the proposed
formulation.

4. Conclusions

In this work, an EMS is formulated for an HPP participating in bidding stages in the German
energy market. The HPP utilizes site-specific historical measurements to improve wind power
forecasts. Additionally, it uses an online cyclic damage minimization approach to accurately
balance the battery damage cost against the revenue obtained by selling electricity on the
market. The proposed formulation is compared to an industry standard formulation, and to
an intermediate standard+data formulation.

Although the standard case generates the highest revenue, because of its forecast error the
deviation penalties are significantly higher, resulting in a smaller profit. The integration of
site-specific data in the standard+data case shows a significant reduction in deviation penalties,
but only a slightly smaller battery degradation cost, highlighting the role of battery reserves
in mitigating deviations. In the proposed case, the optimizer is empowered by a more accurate
information on battery degradation and by a reduced forecasting uncertainty, resulting in the
highest economic profit.

Future extensions of this work include replacing the current deterministic power and market
price forecasts with probabilistic ones, and performing a stochastic optimization within the EMS.
Furthermore, it would be interesting to assess the impact of different wind farm control power
tracking approaches on the HPP economic performance.
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