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Abstract. Wake steering is an important control strategy to boost power production of a
wind farm. Because of computational expense and problem complexity, wind farm layouts are
typically optimized assuming they will operate without wake steering. However, performance
gains are possible by simultaneously optimizing wind farm layout and the yaw angles for wake
steering. In this paper, we present a method to train a machine learning model to predict
turbine yaw angles as a function of their position relative to other turbines in the wind farm
and the inflow wind speed. This model is able to predict turbine yaw angles with an R2 value
of 0.98. The model also produces turbine yaw angles with wind farm power production that
is similar to yaw angles that have been directly optimized. This method to rapidly compute
optimal turbine yaw angles for wake steering enables control co-design of wind farms and the
associated performance increase.

1. Introduction
An important part of wind farm design and operation is to minimize wake interactions between
turbines in order to increase the total farm power production. During the wind farm design stage,
this is done with wind farm layout optimization, where the location of turbines in the wind farm
is optimized to minimize interactions between turbines and maximize the plant performance
[1, 2]. During wind plant operation, control strategies can be used to further decrease wake
interactions between turbines. Of the possible control strategies, wake steering through active
yaw control is one of the most well know and furthest developed methods [3, 4, 5].

Historic and typical current practice is to design wind farm layouts assuming that they
will be operated without wake steering. After fixing the layout, additional gains are achieved
through wake steering. Unfortunately, the wind farm layout and yaw control co-design problem
is challenging because the computational expense increases disproportionately as the number of
wind turbines increases [6]. However, overcoming this “curse of dimensionality” could enable
performance improvements by simultaneously optimizing wind farm layout and yaw angles
for wake steering. This is a specific instance of control co-design—simultaneously optimizing
aspects of system design and control such that the appropriate interactions between the two are
accounted for [7].

A recent paper simultaneously solves the wind farm layout and yaw control optimization
problem by creating an implicit relationship between wind farm layout and optimal yaw angles
[6]. The relationship simplifies and approximates the optimal yaw angle of a turbine as a
function of its relative position to other turbines in a wind farm. The geometry-driven optimal
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yaw angle approximation enables better wind farm layouts to be found because it allows the
layout to be optimized while accounting for wake steering through yaw control. This control
co-design optimization can be done without prohibitive computational expense because the
implicit relationship between optimal yaw angles and turbine locations eliminates any additional
computational cost that comes from explicit yaw angle optimizations within each iteration or
coupled with the wind farm layout optimization. While this geometry-based relationship enables
better wind farm layouts to be found by considering yaw control during the layout optimization,
it is a strong simplification. The yaw angles predicted by this relationship underperform quite
significantly compared to actual model-based yaw optimizations.

In this paper, we build on the previous work by using machine learning to predict optimal
turbine yaw angles as a function of turbine locations. Compared to yaw angles that have been
optimized with (computationally intensive) model-based methods, the model that we created
for this paper is able to predict optimal turbine yaw angles accurately across a wide range of
operating conditions.

2. Methodology
The premise of this research is that optimal turbine yaw angles for wake steering can be
determined implicitly from the location of wind turbines in the wind farm and the wind resource.
This section presents the methods we used to determine this relationship and how it performs
compared to more computationally expensive, traditional yaw-angle optimizations.

2.1. Training Data Set
The first step of this work was to create the training data set from which we would create our
machine learning model. To create this data set, we generated several grid wind farm layouts
with five rows and five columns each. The rows were aligned east to west and the columns
north to south, meaning there was no offset between subsequent rows or columns. We varied
the spacing between rows and columns of each of these turbine grids between five and ten rotor
diameters at one rotor diameter intervals. For each one of these wind farms, we then optimized
each turbine yaw angle to maximize wind farm power production for wind directions between
zero and ninety degrees at one degree intervals, for freestream wind speeds between five and
fifteen meters per second at 1 meter per second intervals. The total result was over 900,000
individually optimized turbine yaw angles with which we trained our model.

To generate this training data, we used the Scipy’s SLSQP gradient-based optimizer with
finite-difference gradients within the Pyoptsparse framework [8, 9]. We modeled the wind farm
power production with FLORIS version 3.2 using the cumulative-curl wake model, square root of
the sum-of-squares for wake combinations, and the NREL 5-MW reference turbine [10, 11, 12].
Any engineering wake model should be able to be used to train a model with the method
demonstrated in this paper, given that it can be used to optimize yaw misalignment angles for
wake steering. Even higher fidelity wake models should work as well given that the optimal yaw
angle of a turbine as a function of its location does not have significant stochasticity.

2.2. Data Preprocessing
For this paper, we follow similar assumptions as the simplified geometric yaw relationship
previously mentioned [6]; that the yaw angle of a turbine of interest can be determined from
that streamwise and cross-stream distance to any downstream turbines that are waked by the
turbine of interest. There are a number of studies that use a similar approach to predict power
outputs and wind speed deficits [13, 14, 15]. These distances are shown in Fig. 1A and B for one
turbine to the nearest waked turbine. Figure 1A shows a group of five turbines with the wind
coming from the left. To train a model to determine the yaw angle of the orange turbine, we
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used the streamwise distance (dx) and the cross-stream distance (dy) to the N nearest waked
turbines, one of which is shown in blue.
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Figure 1. A representation of the geometric preprocessing used to develop our machine learning
model. The panels show how the streamwise (dx) and cross-stream (dy) distances to downstream
waked turbines is defined for two different wind directions.

The black circles represent the other wind turbines in this cluster. In Fig. 1A, notice that
there are two turbines closer to the orange turbine, but these are not waked and therefore do not
affect the yaw angle of the orange turbine. To determine if a turbine was waked, we assumed
that a wake spreads behind a turbine with a wake radius of rwake = αx+ rturbine, where rwake is
the radius of the wake, α is the wake spread constant, x is the streamwise distance downstream
of the waking turbine, and rturbine is the radius of the waking turbine [16]. By testing a few
different wake spread constants, we found best results with a value of α = 0.08, although better
performance may be achieved with a more exhaustive search. We defined a turbine as “waked”
if any part of the rotor overlaps with the wake. We recognize that this definition of a waked
turbine is fairly arbitrary and has the potential to affect the quality of our model; this is an area
for further development. Note that for our purposes, the wake radius given in this paragraph
was only used to determine if a downstream turbine was waked and was not used to calculate
the wind farm power production.

Just as the optimal yaw angle for a turbine changes depending on the incoming wind direction,
the relative distance to downstream waked turbines from a turbine of interest also changes.
Figure 1B shows the same group of five turbines as Fig. 1A, but with the wind coming from the
upper left corner. For this wind direction, the nearest waked turbine is different than in Fig. 1A.
Additionally, there is one more turbine in the wake of the orange turbine for this wind direction.
We preprocessed the training data to calculate the streamwise distance and the cross-stream
distance from each turbine to the five nearest downstream waked turbines. We believe that five
would be sufficient for any wind farm layout, but this should be confirmed for large wind farms.
As stated in the previous section, these distances were associated with the optimal yaw angle
from the continuous gradient-based optimizer.

The preprocessed data was organized into the training matrix shown in Eq. 1. We used an N
value of five, meaning that we used the first five downstream waked turbines to determine the
yaw angle of a turbine of interest. Because our training data used only 5-by-5 turbine grids, this
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means that all downstream waked turbines were accounted for. In Eq. 1, the first N columns
shown in red represent the streamwise distance from the turbine of interest to the downstream
waked turbines. These columns are sorted from the nearest to furthest waked turbine, with the
nearest waked turbine in the first column. The next N columns shown in teal represent the
cross-stream distance from the turbine of interest to the downstream waked turbines. These
columns are sorted like the first N with the nearest waked turbines on the left and the furthest
on the right. Up to this point in the matrix, empty values are filled with 0. That is, in the case
that fewer than N turbines are waked by the upstream turbine of interest, the streamwise and
cross-stream distances are filled with a zero value. Because zero is meaningful in this context (a
zero cross-stream distance would mean the downstream turbine is fully waked by the upstream
turbine), the next N columns shown in violet are Boolean values that indicate if the indicated
downstream turbine is present. If a waked turbine of the appropriate index exists, the value of
the corresponding W entry is 1; else the value is -1. Finally, we expect the yaw control angle
for an upstream turbine to be partially dependent on the wind speed. The final two columns
shown in cyan represent the inflow wind speed to the turbine of interest and the freestream
wind speed.


dx1,1 dx1,2 · · · dx1,N dy1,1 dy1,2 · · · dy1,N W1,1 W1,2 · · · W1,N u1 u1, free

dx2,1 dx2,2 · · · dx2,N dy2,1 dy2,2 · · · dy2,N W1,1 W1,2 · · · W1,N u2 u2, free
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
dxT,1 dxT,2 · · · dxT,N dyT,1 dyT,2 · · · dyT,N WT,1 WT,2 · · · WT,N uT uT, free


(1)

2.3. Machine Learning Model
Using the matrix given in Eq. 1 and the array of optimized yaw angles from the training data,
we trained a machine learning model to find optimal turbine yaw angles for wake steering as
a function of the wind resource and the turbine locations relative to each other. We used the
multilayer perceptron neural-network, a feed-forward network with fully-connected layers, in the
Scikit-learn python package to create our model [17]. This model was single-output, meaning we
predicted the yaw angle of every turbine independently. In the neural network, we normalized
all of the inputs and outputs between -1 and 1. We used five hidden layers with 100 neurons each
and 2000 as our maximum number of iterations. For all other hyper-parameters we used the
default values, which include a constant learning rate of 0.001 and the stochastic gradient-based
Adam optimizer. We tested up to ten hidden layers with different numbers of neurons, and
found the best results with this combination of hyper-parameters. We trained the model with
80% of our data and reserved the final 20% for testing.

The output of the neural network was a trained model with an out-of-sample R2 value of
0.98 across the entire data set. This value may be skewed by the large number of turbines
with zero yaw and will be investigated further in the continuation of this research. The out-
of-sample model performance is shown in Fig. 2. In this figure, each point represents the yaw
angle from the training data versus the yaw angle predicted by our trained model for a single
turbine. Visually, we can see that the model well predicts the turbine yaw angles. However,
there is a streak where the training data has an optimized yaw angle of zero but the model
predicts some yaw misalignment. This could be a shortcoming of the model, a shortcoming of
the optimization used to generate the training data, or simply an artifact of the multimodal
nature of this design space where multiple different yaw angles can result in almost identical
wind farm power production. One thing to remember when evaluating the performance of this
model is overfitting, as large neural networks tend to overfit. Our high out-of-sample R2 value
lends confidence that this predictive model doesn’t contain many local extremes. Even so, any
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Figure 2. Performance of our trained model to predict optimal yaw angles compared to the
training data. Each small dot represents the yaw angle of a single turbine.

overfitting will be important to better understand before implementing this model in a layout
optimization problem.

3. Model Performance
While it may be important for some applications for the trained model to be able to predict
the actual yaw angles achieved from a direct yaw optimization, our end goal is not the yaw
angles themselves but to produce a full wind farm with favorable power production. Figure 3
shows how the wind farm power production with wake steering from our model compares to the
baseline power and to the farm power with direct yaw angle optimization. The results in this
figure are for a grid wind farm with a column spacing of 7.5 rotor diameters and row spacing of
5.5 rotor diameters. These grid spacings are within the upper and lower bounds of the training
data, but has a unique layout that had not yet been tested with the model.

The columns of Fig. 3 show the baseline power production of the wind farm without wake
steering, the percent power improvement from wake steering from our model and directly
optimized yaw angles, and the percent difference between the power production with our model
and from the directly optimized yaw angles, from left to right respectively. As labeled, each row
shows a different freestream wind speed, 13, 10, and 7 meters per second, from top to bottom
respectively. Indicated by the plateau in power production for the 13 meter per second baseline
power, this is above the rated wind speed of the turbines.

The most important takeaway from Fig. 3 can be seen in the middle column. The power
gain of wake steering over the baseline power is very similar between the yaw angles from our
model and directly optimized yaw angles. Notice that the highest gains from wake steering in
the middle column occur at the wind directions with lower baseline power shown in the left
column. At these wind directions, the turbines in the grid are aligned with the incoming wind,
meaning wake losses are high and more benefit is possible by reducing the wake interactions
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Figure 3. The power production achieved with wake steering using our model prediction
compared to directly optimized yaw angles. This figure shows the power for a grid wind farm
with a column spacing of 7.5 rotor diameters and row spacing of 5.5 rotor diameters, which
is out of sample. The left column shows the baseline power production of the wind farm as
a function of the wind direction. The middle column shows the percent power improvement
achieved with wake steering using our model and with directly optimized yaw angles. The right
column shows the comparison between the power production from our model versus the directly
optimized yaw angles. Positive values in this right column indicate that our model produced a
better power, negative values indicate that the directly optimized yaw angles performed better.
Each row indicates a different freestream wind speed, with 13, 10, and 7 meters per second from
top to bottom, respectively.
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through wake steering.
A second takeaway is seen in the right column of Fig. 3. This column shows the percent

difference between wind farm power production with our trained model and with directly
optimized yaw angles for wake steering. Positive values in this column indicate that our model
performs better; negative indicate that the direct optimization performs better. For the majority
of wind directions the difference in power performance between the two wake steering methods
is close to zero. There are a few spikes of larger difference in performance, but across all of the
wind speeds these spikes seem relatively balanced between our model outperforming the direct
optimization and the other way around.

4. Conclusions
In this paper, we have demonstrated a method to train a machine learning model to predict
optimal turbine yaw angles for wake steering. The resultant trained model predicts the optimal
yaw angle of a wind turbine as a function of its location relative to other turbines in the wind
farm and the inflow wind speed to the turbine. For the results in this paper, we trained and
tested the model with grid wind farms of with varied row and column spacing, different inflow
wind directions, and freestream wind speeds between 5–15 meters per second. The out-of-sample
R2 value for this trained model was 0.98 in predicting the turbine yaw angles.

Additionally, we have demonstrated that the power production with wake steering from yaw
angles predicted by our trained model compares extremely well to the wind farm power using
directly optimized yaw angles. The comparison that we show in this paper is for a new wind
farm layout that was not used in the training data.

While this method provides a fast evaluation to determine yaw misalignment for wake
steering, it may not be the best option to determine set points during wind farm operation.
Rather, this new method can be used to enable wind farm layout and yaw control co-design.
The trained model requires only a single wake model function call (to evaluate the inflow wind
speeds to each turbine) to determine the yaw misalignment angles for wake steering. This allows
wind farm layouts to be optimized while assuming they will operate with yaw control, a process
that was previously very challenging or completely prohibited by the large number of design
variables and associated computational expense.

5. Future Work
There are some important continued steps for this research, some of which have been mentioned
in previous sections. First is improvement of the model itself. A more exhaustive search of
hyper-parameters in the neural network, exploring additional or different parameters to train
the model, and other improvements could lead to a better yaw angle prediction. Second is to
test our model for a wide range of wind farm layouts, turbine types, and other wind farm setups
to test the model validity in these different scenarios and make improvements where necessary.
One important cases to explore are larger wind farms with more turbines and non-grid wind
farm layouts. Also included in this future work is better bounds for maximum and minimum yaw
misalignment angles. We have assumed maximum and minimum angles of 30 and -30 degrees,
which may be outside the acceptable bounds of operation from a structural loading perspective.
Third and last is to use this model to optimize wind farm layouts while accounting for yaw
control. This includes ensuring the model does not overfit, exploring which types of wind farms
benefit the most from control co-design, understanding the performance gains possible through
control co-design, and comparing the results with the previous simple geometric yaw model [6]
for this same purpose.
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